
Computer science teacher support material 1

Student work: Criterion CInternal assessment: Example 4

Criterion C: Product Development

Techniques used

a Graphical interface (page 2)

b Methods (page 3)

c Variables (page 4)

d Calculating the best move – algorithmic thinking (page 5)

e Broadcasting (page 6)

Additional information is available in the appendices:

1. Appendix 1 – evidence of development of game

2. Appendix 2 – Bibliography

page 1

Computer science teacher support material 2

Student work: Criterion CInternal assessment: Example 4

Graphical Interface

Each pot must have a different aspect according to the number of seeds it contains. This is

achieved by giving each pot a set of costumes.

Pot 9 has 4 seeds pot 2 has 7 seeds

Pots 1 – 6 are chosen by computer 7 – 12 are clicked on by the player

At the start of the game each pot has 4 seeds and is placed precisely on the board.

Pot 7 set on the board with 4 seeds

The number of seeds is stored in the array seedCounts [7]

The precise placing is important as pots change when the sprite is touching the pot. The sprite moves
to precise co-ordinates.

Sprite moves anti-clockwise on the board to next pot and swaps between the two rows if necessary.

page 2

Computer science teacher support material 3

Student work: Criterion CInternal assessment: Example 4

Methods

Methods are called by objects via “broadcasting” and messages broadcast are received by everyone.
The following code prevents the message being picked up by the wrong pot.

Pot must have sprite touching and the flag ensures that once the sprite has moved on the
same message is not used by another pot.

page 3

Computer science teacher support material 4

Student work: Criterion CInternal assessment: Example 4

Variables

local variables
place is local to the pot object and set at the beginning of the game. This is used to set the position of
the pot. It also acts as the index in the array seedCounts
highest, rank, temp1, temp2 are local to Sprite and are used to calculate the best move
potScores – a list local to Sprite used to hold score that each pot could collect if chosen

global variables
computerScore, playerScore used to hold the current scores of players. This are displayed
throughout the game
flag, flag2 used to indicate message picked up
seedCounts a global list holding the number of seeds in each pot.

The use of local variables for the pots meant that each pot could be derived from the basic pot with
little change of coding. The only differences in code are:
 - setting the place for each pot
 - giving a call for the “move” according to which player the pot belongs to

page 4

Computer science teacher support material 5

Student work: Criterion CInternal assessment: Example 4

Calculating the best move

for each pot that belongs to the computer
set rank to zero
set temp2 to (number of seeds in pot) mod 12 – calculates the number of moves avoiding

complete cycles of board
add pot number and subtract 12 - finds the pot that will be the final drop
if pot belongs to player

while seeds in pot either 1 or 2
add number of seeds in pot to potscores [pot]
move back - calculates the number of seeds that can

endwhile be taken
endif

endfor
set highest to 0
set rank to 0
for each pot

if potscores[pot] > highest
set highset to potscores[pot] - finds pot with highest potential score
set rank to pot

endfor
if rank = 0 set rank to random number between 1 – 6 - if none score then choose random pot
move sprite to position |rank + 6]
call ComputerGo - start move

Setting the board was more difficult than expected. At first I placed each pot by hand but this was too
inaccurate and as the sprite moved sometimes it was not exactly touching the pot. To get over this
each pot moves to an exact position at the start of the game.

Start of game. Player has the bottom row and computer the top row
Score shown next to row.

page 5

Computer science teacher support material 6

Student work: Criterion CInternal assessment: Example 4

Broadcasting

Another problem was the broadcasting to call methods. There seemed no way to broadcast to a
specific object which meant that more than one pot picked up the message. The restriction that the
sprite had to be touching was not enough as the sprite moves from pot to pot. Setting a flag once a
message had been received stopped this confusion.
When my cousin played we found that there were not enough costumes to each pot and after
reaching 12 the pots would go back to zero, giving a wrong picture. This was corrected by 36
costumes for each pot. It seems a bit excessive but sometimes the game did go over 20 in a pot –
probably my cousin was doing it on purpose.
Another thing that went wrong was that sometimes, if none of the pots could give a score, the
computer chose a pot which had no seeds. To prevent that a random number is repeatedly generated
until the pot chosen is not empty. Since the game ends when either computer or player has all pots
empty, this should not cause an infinite loop.

Game in mid-play with player having chosen pot 1 which is emptying
and has 3 left. The score is 6 – 0 to the computer.

When the teacher played he managed to win quite often but my cousin generally lost. The teacher
strategy was to avoid a capture by the computer. My cousin tried each time to get a score.
Both of them enjoyed playing the game. The teacher noticed something that neither I nor my cousin
had noticed. On a very few occasions the computer did not choose the pot that gives the most score. I
finally tracked this down to an error in counting round the board but it was too late to put it right.

page 6

