
IB Internal Assessment

Criterion B: Design

Structure Chart

The first step in designing the Weight Lifting Program was to organize my thoughts using a structure
chart which gave me the basic design of the program.

The structure chart helped me to visualize the tasks that the program needed to perform. As a result I
decided to organize these tasks into the following Java classes: Player, WeightTraining, MaxDatabase,
WeightLiftingProgram, and PrintWeightProgram.

Each class has the following responsibilities:

 Player – stores each player’s name and weight max for each exercise.

 WeightTraining – this class is the program’s user interface. It is responsible for interacting with
the user through a menu system. It contains the program’s main method.

 MaxDatabase – maintains a list of Player’s. It also provides methods for manipulating this list.

 WeightLiftingProgram - provides static methods for calculating weekly workout weights for
each of the four main exercises: bench, squat, incline, and power clean.

 PrintWeightProgram – this class provides methods that communicate with a printer. It can
print a weekly workout program for every player.

IB Internal Assessment

UML Class Diagrams

To help me decompose the problem into classes I used UML class diagrams.

WeightTraining
-max : MaxDatabase
-keyboard : Scanner
+WeightTraining() : constructor
+mainMenu() : void
+validateIntegerInput(String): Integer
+validateWeekNum(int) : void
+addPlayer() : void
+updatePlayers() : void
+delete() : void
+viewAllPlayers() : void
+searchForPlayer() : void
+print() : void
+printWeightLiftingProgram() : void
+saveDataFile() : void
+main() : void

Player
-name : string
-benchMax : integer
-squatMax : integer
-inclineMax : integer
-powerMax : integer

+Player() : constructor
+Player(integer, integer, integer) : constructor
+getName() : string
+getBenchMax() : integer
+getSquatMax() : integer
+getInclineMax() : integer
+getPowerMax() : integer
+setName(string) : void
+setBenchMax(integer) : void
+setSquatMax(integer) : void
+setInclineMax(integer) : void
+setPowerMax(integer) : void
+toString() : string

MaxDatabase
-players : list of Player

+MaxDatabase() : constructor
+readFile() : void
+saveFile() : void
+makeBackupFile() : void
+addPlayer(Player) : void
+deletePlayer(Player) : void
+clearDatabase() : void
+getPlayers() : list of Player
+searchByName(String) : Player
+sortPlayersByName() : list of Player
+copyList() : list of Player

PrintWeightProgram

-players : list of Player
-textLines : list of strings
-week : integer
-player : Player

+PrintWeightProgram(list, integer) : constructor
+PrintWeightProgram(Player, integer) : constructor
+initTextLines() : void
+print() : void

WeightLiftingProgram
-/formulas : list of doubles

+/calculateBench(integer, integer)
 : integer
+/calculateSquat(integer, integer)
 : integer
+/calculateIncline(integer, integer)
 : integer
+/calculatPowerClean(integer, integer)
 : integer

IB Internal Assessment

Prototype

Next I created a prototype (Appendix B) for the program so that I could take it to my client and he
could see the program’s user interface. The prototype provided my client the opportunity to give the
ok or suggest any changes he would like to make. For the design of the prototype I choose to create a
stub program. Since the program is a terminal window program creating a stub program would have
the most impact because my client could see the program in action from a visual stand point. As an
added benefit the stub program provided me the opportunity to write some code that could be used
as a framework for the program.

When I showed my client the prototype he was very pleased, however he did suggest a couple of
changes. First he asked if I could have the program print a list of all the players divided into groups
according to their max on the bench press. He said when players are organized into workout groups by
weight max it is easier for the players to change out the weights when they are not lifting the same
amount of weight. Second he thought it would be helpful if the program could record the players’
classification (freshman, sophomore, junior, senior) so that at the end of the school year the seniors
could be deleted from the database and the underclassmen promoted to the next grade level.

Modifications to Initial Design

To accommodate my client’s recommendations I made the following changes to my initial design:

1. Added a classification instance variable to the Player class.
2. Added two additional classes to the program’s design named Group and PrintGroups.

 Group – this class stores a specified number of Players to form a workout group.

 PrintGroups – this class is responsible for interacting with the printer and printing a list
of Groups

Inputs and Output

Inputs - Player name, classification, bench press max, squat max, incline max, and power clean max.

Sample Input Screen

====================
 Add Player
====================
Enter Player Name (lastname, firstname)-->Wayne, John
Enter Player Classification (9,10,11,12)-->11
Enter Bench Max -->300
Enter Squat Max -->450
Enter Incline Max -->270
Enter Power Clean Max -->250

file:///F:/CompSci%20Stuff/Example%20Java%20IA/Forms/Documentation/Appendix%20B%20-%20Prototype.pdf

IB Internal Assessment

Outputs

 Display – individual player record, all player names sorted by last name

 Printout – workout cards, workout groups list

Sample Workout Card Printout

Name: Wayne, John
Program Week: 1
Current Maxes: Bench – 300 Squat – 450 Incline – 275 Power Clean – 250
--
Reps: 10, 8, 8
Squat: 270 Power Clean: 150
Bench: 180 Incline: 165

Sample Groups List Printout

Group 1

Douglas Kirk Bench Max = 400
Mitchum, Robert Bench Max = 350
Cooper, Gary Bench Max = 325
Holden, William Bench Max = 305

Group 2

Wayne, John Bench Max = 300
Gable, Clark Bench Max = 300
Peck, Gregory Bench Max = 260
Fonda, Henry Bench Max = 250

Group 3

Hudson, Rock Bench Max = 240
Heston, Charlton Bench Max = 225
Stewart, Jimmy Bench Max = 200
Cagne, James Bench Max = 200

IB Internal Assessment

Test Plan

The chart below describes my test plan that will determine whether the program is functioning
properly and meets all the criteria.

Program Feature to Test Test Strategy

ProtoType Run the prototype and verify that the menu system
works as intended.

 Test submenus to verify that they can be navigated
easily.

Data Validation System Verify that if user types invalid data he is able to re-enter
the data instead of program crashing.

o Type a letter when program expects a number.
o Type a number that is not in the expected range.

Database - ArrayList Add 5 Player records to the database. Display the
database to verify that data was stored as expected.

Player Update/Deletion Features Update a Player record by changing his max values.

 Delete a Player from the database.

File Input/Output Verify that program creates data file the first time
program is launched.

 Save database to data file. Exit program. Execute
program again to verify that data is loaded into program
properly.

Backup File System Verify that program copies data from input file into a
backup file when program is executed.

Sorting Feature Verify that sorting database by name works by displaying
list.

 Verify that sorting by bench max works by displaying list.

Workout Program Formulas Verify that formulas that calculate the workout programs
for players is correct by doing some samples manually on
a calculator.

Workout Program Print Feature Print a week 1 workout program for all players.

 Print a week 10 workout program for a single player.

 Add 10 additional records to database to verify that
multipage printouts work as expected (margins, spacing).

Workout Groups Feature Print workout groups to verify that players are organized
into groups of 4 according to their bench max.

Closeout School Year Feature Add Player records to database that a varying
classifications. Run this feature and verify that seniors
are removed from the database and underclassmen are
promoted to the next grade level.

Words: 473

