Trace Tables

1. Note: A string is an array of characters. For example, in this method the element referred to by STR[9] is the 10th element in the string and STR[0] refers to the first element in the string.

A single space character is represented as " " in the algorithm.

```
double CALC(String STR)
C = 0
S = 0
T = 0
loop until STR[S] = "."
if STR[S] = " " then
C = C + 1
else
T = T + 1
end if
S = S + 1
end loop
return T / (C + 1)
```

a. Complete the trace table below for the following call to method CALC("it is.").

Note: First line of chart is variable initialization before entering loop.

Loop Iteration	STR	С	S	Т	STR[S]
0	it is.	0	0	0	
1	it is.	0	1	1	i

b. State the value returned by the method.

2. The following is an algorithm for a method named prime.

```
boolean PRIME(int NUMBER)
FACTOR = 2
FOUND = false
P = false
loop while (FACTOR * FACTOR) <= NUMBER AND NOT FOUND
if NUMBER mod FACTOR = 0 then
FOUND = true
end if
FACTOR = FACTOR + 1
end loop
P = NOT FOUND
return P</pre>
```

a. Complete the following trace table for the call PRIME(9).

Loop Iteration	Number	FACTOR	FOUND	Р

b. Use trace table to determine the return value when PRIME(20) is called.

Loop Iteration	Number	FACTOR	Р	FOUND

c. Use trace table to determine the return value when PRIME(17) is called.

Loop Iteration	Number	FACTOR	Р	FOUND

3. Describe how the algorithm in the PRIME method works.

4.

Given the following array

NAMES

[0]	[1]	[2]	[3]	[4]
Robert	Boris	Brad	George	David

and the following algorithm, which is constructed to reverse the contents of array NAMES

```
N = 5 // the number of elements in the array
K = 0 // this is the first index in the array
loop while K < N - 1
    TEMP = NAMES[K]
    NAMES [K] = NAMES [N - K -1]
    NAMES [K] = NAMES [N - K -1]
    NAMES [N - K -1] = TEMP
    K = K + 1
end loop
```

a. Trace the algorithm, showing contents of the array after each execution of the loop.

Ν	К	TEMP	N-K-1	[0]	[1]	[2]	[3]	[4]
5	0			Robert	Boris	Brad	George	David
5	1	Robert	4	David	Boris	Brad	George	Robert

NAMES

- b. Explain why the algorithm does not reverse the contents of the array NAMES, and how this could be corrected.
- 5. The names of the members of a cycling club are stored in an array **NAMES** as shown below.

[0]	[1]	[2]	[3]	[4]	[5]
JONES	SMITH	GOMEZ	SINGH	BUTLER	HU

After a competition, an array of positions **POS** is formed as follows.

[0]	[1]	[2]	[3]	[4]	[5]
2	4	2	3	1	5

There was a tie for second place.

Consider the following algorithm fragment. The arrays *NAMES*, *POS*, and *TEMP* are all declared with a size of 6.

```
loop I from 0 to 5
   TEMP[I] = "ZZZ"
end loop
loop I from 0 to 5
   TEMP[POS[I]-1] = NAMES[I]
end loop
loop I from 0 to 5
   NAMES[I] = TEMP[I]
end loop
```

a. Complete the following trace table for values 0 to 5 in the second loop of the algorithm.

I	POS[I]	<pre>TEMP[POS[I]-1]</pre>

b. List the contents of the array NAMES after the third loop has been executed.

[0]	[1]	[2]	[3]	[4]	[5]

- *c.* State the purpose of the algorithm.
- d. Suggest how the problem with the two competitors who tied could be avoided.

6. Look at the following algorithm.

```
TOTAL = 0
loop I from 0 to 4
    loop J from 0 to I
        TOTAL = TOTAL + 1
    end loop
end loop
output TOTAL
```

a. Construct a trace table for the variables I, J, TOTAL.

b. What is the value of TOTAL when output?